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ABSTRACT Relationships between bacterial taxa are traditionally defined using 16S 
rRNA nucleotide similarity or average nucleotide identity. Improvements in sequencing 
technology provide additional pairwise information on genome sequences, which may 
provide valuable information on genomic relationships. Mapping orthologous gene 
locations between genome pairs, known as synteny, is typically implemented in the 
discovery of new species and has not been systematically applied to bacterial genomes. 
Using a data set of 378 bacterial genomes, we developed and tested a new measure of 
synteny similarity between a pair of genomes, which was scaled onto 16S rRNA distance 
using covariance matrices. Based on the input gene functions used (i.e., core, antibiotic 
resistance, and virulence), we observed varying topological arrangements of bacterial 
relationship networks by applying (i) complete linkage hierarchical clustering and (ii) 
K-nearest neighbor graph structures to synteny-scaled 16S data. Our metric improved 
clustering quality comparatively to state-of-the-art average nucleotide identity metrics 
while preserving clustering assignments for the highest similarity relationships. Our 
findings indicate that syntenic relationships provide more granular and interpretable 
relationships for within-genera taxa compared to pairwise similarity measures, particu
larly in functional contexts.

IMPORTANCE Given the prevalence and necessity of the 16S rRNA measure in bacterial 
identification and analysis, this additional analysis adds a functional and synteny-based 
layer to the identification of relatives and clustering of bacteria genomes. It is also 
of computational interest to model the bacterial genome as a graph structure, which 
presents new avenues of genomic analysis for bacteria and their closely related strains 
and species.

KEYWORDS synteny, genome analysis, microbiome

1 6S ribosomal RNA regions are used to identify bacteria and form the foundation 
for phylogenetic relationships between bacterial groups (1, 2). 16S rRNA analyses 

use variable regions of the 16S region to identify groups of similar sequences (3). The 
level of identification (e.g., strain, species, and genus) depends on sequencing power. 
However, improvements in technology expand the sequencing potential beyond the 
variable region of the 16S gene to the entire 16S region, as well as to entire genomes 
(4). Studies have shown that 16S-based analysis is not infallible and does not always 
corroborate other forms of phylogenetics or taxonomy (5, 6). 16S analyses rely on 
reference databases and heuristic clustering into “operational taxonomic units”, which 
can remove individual genomic sequences in favor of a consensus sequence (7). While 
16S regions continue to be the leading form of identification in bacteria, there are also 
numerous pairwise data that are often analyzed post-16S identification or separate from 
16S analysis. There is, therefore, potential to combine or analyze 16S alongside other 
data.
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Matrix transformation is a mathematical approach that combines a pairwise matrix 
with another equally sized matrix. This approach transforms original data into a matrix 
that contains the variation of both input matrices enabling the combination to be 
analyzed as a single matrix. In the context of 16S, full-genome information offers the 
potential for additional types of pairwise data. One example of the phenomenon of 
sequencing improvement is full-genome alignments, possible with tools such as MASH 
or FastANI (8, 9). Here, entire genomes can be aligned in computationally efficient ways 
to gather similarity or distance scores between a pair of genomes. A limitation of this 
strategy is that distance scores are only provided under a certain threshold, which affects 
pairs that are not closely related. Contemporary metrics such as SKANI also include 
the usage of orthologous segments in average nucleotide identity (ANI) calculation, 
improving clustering quality of within-species phylogeny but is limited to calculating 
82% ANI and higher (10).

Synteny is a comparative genomics approach that aligns shared segments of DNA 
between a pair of genomes, highlighting differences in a shared segment location (11). 
The syntenic approach has been used as a visual representation for rearrangements, 
discovery of new shared segments, DNA order changes due to evolution, and genomic 
dynamics of subspecies (12–14). A range of tools exist that provide synteny block 
construction (e.g., Sibelia) and visualization (e.g., Synteny Portal) (15, 16). Synteny is used 
in targeted analyses and, to date, has not been employed in large-scale analyses across 
a representative set of bacteria. Given synteny can provide a representation of similarity 
between two related genomes, we propose a twofold approach for analyzing synteny: 
(i) characterize synteny as a representation of similarity between two related genomes 
and (ii) use syntenic data as an augmentation to 16S data using matrix transformation. 
Our synteny measure, which is based on a geometric graph structure, uses orthologous 
genes as the connection points between a given pair of genomes. We test the impact of 
this measure by transforming 16S rRNA data to demonstrate changes in clustering and 
graphical results, which can be used to understand new relationships between bacteria 
based on different data contexts. We compare this with state-of-the-art techniques with 
ANI calculation to test the difference in both clustering quality and clustering results.

MATERIALS AND METHODS

Data acquisition from GenBank and ortholog construction

Bacterial genomes from GenBank were downloaded using ncbi-genome-download (17). 
For each bacterial species, one strain was chosen at random, after which only genomes 
with 16S genes were chosen. CheckM was used to evaluate genome completeness and 
contamination, of which genomes with completeness >90% and contamination <5% 
were used for the study (18). This resulted in 378 bacterial genomes in total for analy
sis. Genomes were organized in both GenBank Flat File and FASTA formats for further 
analysis. Taxonomic data on each species were gathered using NCBI Taxonomy.

Core gene ortholog construction

Core genes were identified using the UBCG2 data set (19). Core gene names and 
functions were taken from UBCG2 and compared with annotated genes and gene 
functions in GenBank flat files to identify core genes from the database. Identified genes 
were BLASTed against the entire gene database to identify orthologs, of which orthologs 
with greater than 95% nucleotide identity and a base pair length between 500 and 2,500 
base pairs were kept.

Comparative distance score calculation: 16S, MASH, and ANI

16S rRNA genes were identified from GenBank annotated flat files, which have been 
computationally predicted using protein homology. These genes were compared to the 
SILVA ribosomal RNA gene database project to confirm 16S identity (20). For each pair 

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00497-24 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
N

ov
em

be
r 

20
24

 b
y 

26
20

:6
e:

60
00

:3
10

1:
a4

d3
:5

9d
f:

df
7f

:b
36

3.

https://doi.org/10.1128/msystems.00497-24


of genomes, the MASH distance between each set of 16S genes per gene was calculated 
(8). Whole genome MASH distances were also calculated using FASTA versions of sample 
genomes and ANI values calculated using SKANI on FASTA files. MASH distances were 
organized into a pairwise distance matrix, where the column and row indicated the 
species pair. The MASH distance was also validated against known taxonomic distance 
based on species name.

Synteny graph structure and measure

The construction of the pair synteny graph requires (i) a relatively ordered set of genes 
for each of the genomes and (ii) a set of at least two orthologous gene pairs between 
the two genomes. First, two linear graphs are created for each genome, after which 
edges are drawn between the orthologous gene pairs. Next, the cosine similarity of 
every combination pair of orthologs is calculated, using the relative order position of 
the gene in genome A and the gene in genome B (Fig. 1). The average of the array 
of cosine similarities is calculated as the synteny similarity for that arrangement. To 
perform the other rearrangements to simulate the circularity of genomes, a single pair 
is chosen as the pivot and arranged for each of the pair genes to be the top gene of 
the linear genome graph. The other genes are respectively ordered underneath the pivot 
gene of the pivot pair. The cosine similarities of every pair of orthologs are calculated, 
and the average cosine similarity is produced. To find the final synteny similarity, the 
median synteny similarity across all rearrangements is used. Median synteny similarity 
for each pair of genomes was organized into a pairwise similarity matrix, of which the 
distance matrix was calculated by subtracting every matrix value from 1. Only core gene 

FIG 1 Visualization of the synteny similarity process. In step 1, multiple arrangements are created based on the ortholog set given, where the first order is the 

given order from the GenBank flat files and each following order is based on a chosen ortholog as the pivot. In step 2, the cosine similarity for each pair of 

orthologs is calculated, where values closer to 1 indicate similar positions of the orthologs and values closer to 0 indicate lower similarity. Finally, in step 3, the 

values are compiled per arrangement to find the median; then, the median among all the arrangements is chosen. Median values were used to reduce skew 

based on a wide range of cosine similarity values.
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orthologs were used in the first iteration of the synteny similarity matrix, after which 
other functional gene group orthologs were used.

Synteny coverage metric

Synteny coverage was calculated as an asymmetric pairwise measure, equaling the 
summed length of the shared nucleotide blocks of a pair divided by the total genome 
length of the chosen genome (11). Therefore, this measure is different for each of the 
genomes used in the pairwise measure.

Random forest prediction

Random forest models were trained on a combination of 16S, whole genome distance, 
or syntenic distance (with all combinatoric possibilities) to predict taxonomic distance. 
Taxonomic distance was formed as a binary variable for each Linnean taxonomic level 
(i.e., kingdom, phylum, class, order, family, and genus), and an individual model was 
trained for each level. Accuracy and Receiver Operating Characteristic (ROC) curves were 
calculated for every model possibility.

Augmenting 16S data with syntenic similarity

To perform augmentation of the 16S MASH distance matrix, we used the covariance 
matrix of the synteny distance matrix. The dot product of the 16S MASH distance matrix 
and the covariance matrix of the synteny distance matrix resulted in the augmented 16S 
synteny distance matrix, which was normalized to range between 0 and 1. 0 indicated 
complete similarity based on 16S and synteny data, while 1 indicated no similarity. The 
completed matrix is symmetric, in which the diagonals indicate complete similarity for 
the synteny of the same genome.

Hierarchical clustering

Complete linkage hierarchical clustering was performed on the synteny-scaled 16S 
distance matrix, the original 16S distance matrix, and the ANI distance matrix. Dendro
grams were visualized using unrooted trees in ggTree and labeled using the bacterial 
taxonomic phyla (21). The cluster cutoff number was varied to analyze metrics over 
a single experimental variable. To compare the results of the clustering groups, the 
Rand score and silhouette scores were all calculated. Rand scores form a similarity score 
for two clusterings when the matches between clusters are not known, by accounting 
for all combinations of cluster pairs between the two. Rand scores range from 0 to 1. 
Silhouette scores calculate the quality of clusters and range from −1 to 1, with a value 
of 1 indicating a high-quality cluster. Metrics were compared across 16S data alone, ANI 
data, and the novel synteny metric. In addition, due to the sparsity of data in ANI, two 
other reduced data versions of the synteny metric were used. One contained only values 
greater than 82% to match the threshold value of ANI, and the other only contained 
the values for non-zero pairs in the ANI matrix. These were termed “Thr” and “Rem,” 
respectively. The comparison was performed using ANI and synteny coverage in place of 
the synteny metric, where it was scaled using the covariance metric schema against 16S 
to calculate the silhouette score.

KNN graphs

K-nearest neighbor (KNN) graphs were constructed for the original 16S distance matrix, 
the synteny-scaled 16S distance matrix, and the ANI matrix using NetworkX. Using the 
“distance” mode, the normalized KNN array was visualized as a graph using the Kamada–
Kawai Layout of NetworkX. Visualized graphs were labeled with the taxonomic phyla 
or the taxonomic class. Network quality was calculated using modularity. The networks 
were compared using (i) Jaccard similarity, (ii) weighted edge Jaccard similarity, (iii) dice 
coefficients, and (iv) DeltaCon distance (22). The inverse value of the DeltaCon distance 
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was used to provide similarity. Additionally, DeltaCon node and edge attribution was 
performed (23). The cluster cutoff was varied to visualize which cutoffs had the highest 
similarity scores and modularity changes in quality. Community detection of the KNN 
graphs was performed as a parallel for hierarchical clustering with the Girvan–Newman 
algorithm, which uses iterative removal of edges based on the shortest path (24). 
Girvan–Newman communities were displayed as a dendrogram, where the number of 
communities is chosen by the algorithm.

Functional application

Four cohorts were chosen to apply the synteny measure and augment 16S data. 
The gene functions of (i) mobile genetic elements, (2) virulence factors, (3) antibiotic 
resistance, and (4) metabolic genes (consisting of short-chain fatty acids and neurotrans
mitter genes) were sourced using a combination of pre-existing descriptions in GenBank 
Flat Files and separate databases. Mobile genetic elements were identified using a set 
of keywords (transposase, transposon, conjugative, integrase, integron, recombinase, 
conjugal, mobilization, recombination, and plasmid) from flat file descriptions. Antibiotic 
resistance nucleotide sequences were gathered from the CARD database and compared 
to database sequences using BLAST, of which sequences have an identity above 90% 
(25). The retrieved sequences were BLASTed against the entire database again to identify 
orthologs, using greater than 95% sequence similarity and a length between 500 and 
2,500 base pairs. Virulence factors went through the same process using the Virulence 
Factor Database (26). The metabolic genes cohort was identified using a combination of 
gut–brain modules from Vieira-Silva et al. and bile acid metabolism from Funabashi et al., 
which were sourced as KEGG modules (27, 28). Genes in the KEGG modules that matched 
the data set’s species were downloaded and then BLASTed against the gene database 
to orthologs once again (29). Each cohort of orthologs was filtered the same way as the 
original core gene cohort, and synteny similarity was calculated for pairs of genomes 
that had at least two ortholog pairs. Random forest models were trained on functional 
synteny to predict taxonomy. The same augmentation process was used to form 16S 
synteny-scaled distance matrices for each functional cohort, with only values above the 
82% threshold. Hierarchical clustering was performed, with silhouette scores and Rand 
scores calculated. KNN graphs were also visualized with weighted Jaccard and DeltaCon 
coefficients calculated between the original 16S and original 16S synteny-scaled matrix.

RESULTS

GenBank public data provided genomic, 16S, and core gene data

Our analysis focused on 378 genomes retrieved from GenBank, which represented 10 
phyla (Actinomycetota, Bacteroidota, Campylobacterota, Chlamydiota, Bacillota, Fusobac
teriota, Pseudomonadota, Spirochaeota, Mycoplasmatota, and Verrucomicrobiota), 19 
classes, 125 genera, and 378 species. Pseudomonadota and Bacillota had the highest 
representation (with 135 genomes each), followed by Actinomycetota (n = 42) and 
Bacteroidota (n = 29). The other phyla had under 15 genomes per phyla, with Verrucomi
crobiota having only a single genome. Using the 16S sequences from each genome, 
we calculated the MASH distance between every pair of genomes, which accounted for 
multiple unique 16S genes per genome (30, 31). Core genes were identified using the 
UBCG2 database, resulting in 34,051,278 genes across the database, roughly averaging 
70 genes per genome.

Synteny similarity measure indicates genus-level dynamics among bacteria

The developed syntenic measure ranged from 0 to 1, where 1 indicated complete 
similarity and 0 indicated complete dissimilarity between a given genome pair. The 
proposed method involves forming multiple rearrangements of the relative gene order, 
followed by pairwise cosine similarity values for each ortholog pair, and a compilation of 
data values across the pairs and arrangements (Fig. 1). In the data set used for this study, 
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synteny values for core genes were found for pairs within the same phyla, representing 
the phyla of Bacillota, Actinomycetota, Pseudomonadota, Bacteroidota, and Spirochaetota 
(Fig. 2A). Smaller subnetworks were identified from the greater network of synteny, 
where each edge represented a synteny similarity and is weighted by the similarity. 
The two largest subnetworks were of Pseudomonadota and Bacteroidota, the largest 
comprised of the species in Gammaproteobacteria class, and the second-largest formed 
of species in the Bacteroidales order (Fig. S6 and S7). Pseudomonadota, Bacteroidota, and 
Bacillota made up most of the data, with Actinomycetota and Spirochaeta making up 
smaller sets. The distribution of synteny similarity values was, therefore, separated into 
within-genus pairs and out-of-genus pairs. Median synteny similarity values differenti
ated between pairs in the same genus and pairs outside of the same genus (Fig. 
2B). The sparsity of the synteny distance matrix augments 16S distance by using a 
covariance matrix-based transformation (Fig. 2C). The 16S and synteny distance matrices 
additionally had low correlation (Spearman = 0.149), indicating different informative 
values in either matrix. Out of 143,641 total pairwise combinations, there were 553 
non-zero values in the sparse similarity matrix and 143,625 non-zero values in the 16S 
distance matrix. The final scaled matrix has 143,262 non-zero values (0.02% sparsity), 
increasing the original 16S matrix from 58% sparsity with the synteny matrix of 99% 
sparsity. The ANI matrix also had 99% sparsity, which indicated that the sparse version 
of the synteny-scaled metric was necessary for comparison. Two reduced cohorts were 
formed, labeled “Thr” and “Rem.” In Rem, data were removed to only contain the same 
position values as the ANI matrix (99% sparsity), and in Thr, data were only used at a 
threshold above 82% similar to ANI field metrics (77% sparsity). Random forest models, 
which are apt for identifying underlying non-linear trends, were trained to predict 

FIG 2 (A) A network diagram showing organization of synteny similarity measure, where nodes represent individual genomes of species and labeled by 

taxonomic phyla. (B) The count histogram of the synteny similarity measure differentiates between pairs that share the same genus versus pairs that have more 

taxonomic separation. (C) Each heatmap depicts a particular step of the data analysis, the first being the original 16S distance matrix followed by the synteny 

distance matrix (calculated as 1—synteny similarity). The last heatmap displayed the final normalized matrix, the combination of the two previous distance 

matrices. (D) The individual ROC curves for the random forest model trained on taxonomic genus (0, pair in the same genus; 1, pair in the same genus). Each 

curve represents the data input given (16SDist, 16S MASH distance; SynDist, synteny distance; both, 16S and synteny distance values).
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taxonomic distance for data associated with either 16S distance or synteny distance 
(1—synteny similarity). In all six taxonomic levels, 16S distance performed the best 
consistently, which lowered at higher taxonomic levels (e.g., phyla and class). For the 
synteny similarity, only the prediction for the genus level was greater than random, while 
all others resembled random chance (16S AUC: 0.7229, synteny: 0.649, combined: 0.749) 
(Fig. 2D).

Hierarchical clustering of 16S synteny-scaled data displays shifting of clusters

Using the 16S synteny-scaled, original 16S, and ANI distance matrices, we performed 
complete linkage hierarchical clustering. Silhouette scores were used to visualize 
clustering quality, ranging from +1 to −1 with −1 indicating poor clustering quality 
and +1 indicating high clustering quality. When varying the cluster cutoff number, the 
novel synteny metric performed the most consistently for cluster quality via silhouette 
score in the order of Thr (thresholded metric), Rem (removed metric), and the novel 
synteny metric termed “Syn” (Fig. 3C). The synteny metric alone without the 16S data 
performed similarly to the ANI metric as well. The scaling of 16S with ANI data in 
the same covariance format resulted in negative silhouette scores, indicating reduced 
clustering assignments (Fig. S5). Synteny coverage also performed negatively compared 
to 16S and the synteny metric. The resulting dendrograms used a cluster cutoff of 
5, where the highest consistent silhouette score was observed, showing differentiated 
clustering between the scaled and original distance matrices (Fig. 3A and B). The 
dendrogram from the original matrix clustered Pseudomonadota and Bacteroidota, 
while Actinomycetota and Bacillota were clustered into the same general grouping but 

FIG 3 Hierarchical clustering displays increased clustering quality with synteny metric compared to ANI. (A and B) The results of hierarchical clustering on 

the data are represented as an unrooted dendrogram at a cluster cutoff of 5, with the taxonomic phyla labeled. (A) represents the original 16S data, and (B) 

represents the synteny-scaled 16S data. (C) Varying the cluster cutoff number from 1 to 100 with the silhouette score across the five different versions of 

comparisons (Syn+16S, the synteny-scaled 16S data; Thr, the Syn+16S cohort with values only greater than 82% threshold; Rem, the Syn+16S data with the 

same positional values as the ANI data). (D) Comparisons between each data group and the ANI data, defining the Rand score across the same cluster cutoff 

modulation. The Rand score shows the similarity of clustering while accounting for possible different cluster numberings. The hue of the point represents the 

cluster cutoff number.

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00497-24 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
N

ov
em

be
r 

20
24

 b
y 

26
20

:6
e:

60
00

:3
10

1:
a4

d3
:5

9d
f:

df
7f

:b
36

3.

https://doi.org/10.1128/msystems.00497-24


remained distinct (Fig. 3A). The dendrogram from the scaled matrix slightly shifted the 
positions of some groupings (Fig. 3B). Most Pseudomonadota remained separate, while 
a small group clustered with Bacteroidota, Spirochaetota, and Chlamydiae interestingly. 
The combined clustering of Bacillota and Actinomycetota remained, with a smaller group 
cluster further away near Mycoplasmatota. Bacteroidota also clustered further away. In 
both dendrograms, Verrucomicrobiota clustered the furthest from all other species and 
remained an outgroup. The remaining data groups of ANI, Thr, and Rem were extremely 
sparse, resulting in incomplete dendrograms.

In addition, comparisons between clustering results were performed against ANI as 
a ground truth standard (Fig. 3D). The Rand score measures the similarity of clustering 
decisions, in which all possible combinations of cluster labels between two sets are 
considered to account for differential cluster number and labeling. Scores ranged from 
0 to 1, with 1 indicating total similarity and 0 indicating no similarity. The highest Rand 
score is in the Rem-ANI comparison, reflecting the fact that the Rem matrix contains the 
same position values as the ANI matrix. The 16S and ANI comparison showed the next 
highest Rand, with the Thr and ANI comparison having a slightly lower Rand score.

KNN graphs offer an alternate form of clustering and visualization of synteny 
scaling

A secondary approach to analyze differences between the original, synteny-scaled, and 
ANI data was through KNN graphs. KNN graphs were generated for all distance matrices 
(16S, SYN, REM, THR, and ANI) across k ranging to 15 (Fig. 4D), where a midpoint of 
k = 10 was used for visualization. Nodes indicated species, and edges were weighted 
by the k neighbors algorithm based on the distance values given. Labels were chosen 
based on taxonomic phyla and class. Visual differences between two networks were 
based additionally on the layout structure, using the Kamada–Kawai path-length cost 
function. The phyla-labeled networks show a distinct set of groupings based on phyla 
(Fig. S8). Similar groups from the hierarchical clustering dendrograms were seen in these 
networks. In the original 16S network, Pseudomonadota separated into two separate 
groups, whereas in the scaled network, Pseudomonadota expanded out linearly (Fig. 4A 
and B). When the taxonomic labeling was changed to class, this expansion was clearly 
based on Gammaproteobacteria. Many of the other groups remain consistent such as 
Bacteroidota, Verrucomicrobiota, and Bacillota, with the Bacillota composition splitting 
into Bacilli and Clostridia distinctly in both the 16S and scaled KNN graphs. We exam
ined these differences further using the weighted Jaccard and DeltaCon comparative 
frameworks. The DeltaCon similarity measure (0.928) also assigns attribution to nodes 
and edges for the impact of the difference between the two networks (Fig. 4C). This edge 
and node attribution, when accumulated per taxonomic class and normalized, resulted 
in the highest attribution to Gammaproteobacteria, Bacilli, Clostridia, Actinomycetia, and 
Spirochaetia. The lowest values of attribution were seen in Verrucomicrobiae, Tissiere
lia, Erysipelotrichia, and Deltaproteobacteria. In contrast, the KNN graph of the whole 
genome scaled 16S data shows much less consistency of taxonomic groupings other 
than Bacillota and Pseudomonadota, wherein the rest of the groups are interspersed. 
Weighted Jaccard was used for speed to identify similarity between an individual 
network and the ANI network across the k-value modulation (Fig. 4E). Between the four 
groupings, the 16S-ANI has the highest similarity overall, while the Thr-ANI similarity 
starts with high similarity at low k-values then decreases lower.

Applying syntenic measure to functional gene groups

Four functional gene cohorts were used to test the synteny measure and clustering 
frameworks, which were antibiotic resistance (ARG), mobile genetic elements (MGE), 
metabolic genes (MET), and virulence factors (VIR). The number of genes found per 
genome represents the ubiquity or the specialization of these genes per bacterial group, 
in which antibiotic resistance and virulence factors tend to be more specific to specific 
bacterial groups, while metabolic genes and core genes tend to be more universal in 
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terms of the numbers of genes present (Fig. 5A). The distribution of synteny similarity 
measures was quite similar across all five functional groups, of which the original metric 
based on core genes has the lowest average, while the other four groups have similar 
averages but different ranges in terms of first and third quartiles (Fig. 5B). The same 
analyses were performed on the larger cohorts to identify differences between the 
original synteny metric based on core genes to the functional cohorts in terms of 
clustering quality and comparison to ANI. Hierarchical clustering modulations showed 
the highest performance with the ARG group, followed by MET, VIR, MGE, and finally the 
synteny metric (Fig. 5C). Weighted Jaccard comparisons with the ANI network showed 
the highest similarity between the MET-ANI, followed by VIR, MGE, and finally ARG (Fig. 
5D).

DISCUSSION

The goal of this study was twofold, to (i) suggest an augmentation procedure for 16S 
rRNA data with a genomic pairwise measure and (ii) provide and test a novel measure 
based on genomic synteny. Two clustering procedures were used to compare differences 
in the original and transformed data, one using hierarchical clustering and another using 
k-nearest neighbor graphs. The ground truth of these clustering approaches ultimately is 
unknown, particularly given that historical bacterial taxonomic nomenclature has been 

FIG 4 KNN graphs display connection differences of synteny-scaled data. Visualizations of KNN graphs on 16S and synteny-scaled 16S data are displayed in 

(A and B), labeled based on taxonomic class. (A) represents the original 16S data while (B) displays synteny-scaled 16S data, where only the top 10 classes 

are displayed in the legend for brevity. The Gammaproteobacteria class is highlighted for relevance. (C) contains results of the DeltaCon network comparison 

method, where nodes and edges are given attribution to quantify their impact on the difference between two networks. Attribution values were accumulated 

into taxonomic class and then normalized. Node attribution is seen in the top bar graph, ordered based on frequency. Edge attribution is represented by a 

pairwise heatmap, where higher values indicate that those pairwise edges held more importance to the difference between networks. (D) displays the network 

modularity over the increasing k variable for the KNN graphs. (E) shows the comparisons of paired networks against ANI networks using the weighted Jaccard 

score.
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based on limited 16S rRNA values and phenotypic data (32, 33). Therefore, ANI was used 
as a proxy for ground truth given it is a field standard and consistent against genome 
fragmentation, to understand how individual versions of the metric fare against ANI.

The results of the synteny similarity measure depict dynamics that match taxonomic 
relationships. At the genus level, more synteny similarity values are seen within-genus 
as opposed to out-of-genus (Fig. 2B). Based on the input data for this task (shared 
core gene orthologs between two genomes), this result validates the assumption that 
closer related genomes are more likely to share more genes. Therefore, there are more 
non-zero similarity values present for genomes that are in the same genus as opposed 
to those outside of the same genus. This also validates the random forest result that 
prediction only on the genus level is above random. The synteny similarity network 
also demonstrates that all synteny measures are within-phyla, indicating non-zero values 
for genome pairs that are more closely related than out-of-phyla pairs (Fig. 2A). The 
sparsity of the final synteny matrix displays its value when mathematically combined 
to the original 16S matrix, creating a pairwise matrix that has more variation than 
the two input matrices (Fig. 2C). The synteny measure on its own, therefore, does 
not indicate taxonomy other than being within-phyla and generaspecific but is not 
necessarily predictive of these attributes. Instead, it is most valuable when scaled on 
other non-sparse data and significantly reduces matrix sparsity.

The hierarchical clustering and KNN graph approaches reveal different pieces of 
information with respect to the original 16S distance data and the ANI data. In the 
clustering approach, the quality of the clustering, determined by the silhouette score, is 
better for the synteny matrices in comparison to the ANI and original 16S matrix. This 
likely reflects the improvement in the sparsity of the matrix values. In contrast, using the 

FIG 5 An overall representation of the results of the synteny scaling process on multiple functional gene cohorts. (A) Mean quantities of cohort genes found 

per genus, where ARG means antibiotic resistance; VIR, virulence factors; MGE, mobile genetic elements; MET, metabolic genes; and COR, core genes. Color labels 

indicate taxonomic phyla. (B) Synteny similarity distributions as box plots for each functional cohort. (C) Results of hierarchical clustering across cluster cutoff 

increasing, indicating changes in clustering quality using silhouette scores. (D) Comparisons of cohort KNN graphs against the ANI network using weighted 

Jaccard, where higher values indicated greater similarity between two networks.
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ANI matrix as an augmentation on 16S resulted in negative silhouette scores but similar 
Rand scores as 16S and the synteny metric. The Rand scores depict that higher cluster 
cutoff values lead to better Rand scores or similarity in clusters between ANI and the 
metric. Interestingly, the opposite occurs in the KNN graphs where lower k-values result 
in higher similarities to the ANI network via the weighted Jaccard metric. Additionally, 
the Rem matrix performs similarly to ANI likely due to high sparsity of data as well. 
Therefore, between the sparsity of the Rem matrix and the lower similarities between 
ANI and the Thr matrix, the original synteny matrix represented the best combination 
of clustering quality and similarity to ANI for the functional cohorts. These results also 
highlight an interesting dynamic between the two clustering approaches. Hierarchical 
clustering draws out general dynamics across the entire data set, particularly stabilizing 
and improving ANI similarity at higher cluster cutoff values, whereas the KNN approach 
performs better at low k-values, highlighting the strongest pairs. The choice of respective 
hyperparameters (k in KNN and the number of clusters in clustering) determines the 
interpretation potential and the type of information available in each complementary 
approach.

The application of these approaches to the functional cohort reveals that the choice 
of input plays a strong role in the value and interpretation of this metric. While originally 
core genes were solely used for the metric in the original synteny metric, we observed 
that antibiotic resistance and metabolism-based genes performed quite well in terms of 
clustering quality via silhouette scores, with values closer to the Thr matrix in Fig. 3C. In 
addition, the metabolism cohort also had the highest weighted Jaccard similarity to the 
ANI networks. While the metabolism cohort has higher amounts of data compared to 
the core genes, the mobile genetic elements cohort also has higher data quantities yet 
does not perform as well. Therefore, it is possible that there is some underlying signal 
where metabolic genes are providing more granular detail on microbial relationships. 
Previous studies have shown the importance of core metabolic genes as necessary 
to the minimal bacterial gene set or “pan genome,” which is possibly being reflected 
here (34). However, antibiotic resistance genes also show high clustering quality despite 
having lower amounts of genes and lower similarity to the ANI networks, whereas the 
virulence cohort also shows higher similarity to the ANI networks via weighted Jaccard, 
possibly indicating that the virulence genes represent distances closer to ANI, whereas 
antibiotic resistance has less similarity. In both approaches, Gammaproteobacteria make 
the highest impact in terms of number of genes per cohort as well as most amount of 
synteny data, which historically encompass many pathogens as well as have the higher 
representation of antibiotic resistance and virulence in our data set (Fig. 5A). This is 
unsurprising given that the data have the most number of genomes for this group of 
bacteria, potentially due to the clinical bias of GenBank (35). This is particularly visible 
in the change in the KNN graph structure between the 16S data and synteny-scaled 16S 
data (Fig. 4A and B). However, despite this bias, there are also an equivalent number 
of Bacillota genomes present in the data and consistent core genes that made up 
the original synteny metric, which does not significantly change structure. Thus, this 
phenomenon depicts that as data quality and number of genomes per bacterial class 
increase, visible changes in clustering and network structure truly represent changes 
in the genomic data, rather than changing solely as data increases. Metabolic genes 
are most successful across all groups at replicating ANI relationships and improving 
clustering quality. In contrast, antibiotic resistance genes can improve novel relationships 
between bacteria that share resistance, which are less likely to be found by ANI and 
16S measures. Thus, it is, therefore, possible to consider this tool in a gene function 
distribution context as well, to see how functionality affects the final similarity to ANI and 
whether those functions reflect if a pair of bacteria are known to be related or not.

Current taxonomy and identification improvements have focused on using whole 
genome alignments instead of 16S sequences, particularly for pathogen outbreak 
tracking and variant differentiation (36, 37). Some techniques make use of solely 
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vertically transferred genes, which illustrates a choice of genes for phylogenetics (38). 
Computational methods have also been designed to combine sequencing data from 
different PCRamplified 16S rRNA regions to increase resolution (39). Methods in other 
species have made use of multiple rRNA sequences (18S, 16S, and 28S) along with 
cytochrome C to define phylogenetic relationships by combining the alignments of 
multiple conserved genes (40). The synteny measure also differs from average nucleotide 
identity by providing detailed information for bacterial relationships that expand a single 
distance value. Few studies have explored functions as features of genomic relationships 
but have been explored in the context of horizontal gene transfer (41). As bacterial 
nomenclature also continues to change and develop with updated information, this 
augmentation method can provide contextspecific relationships that are independent 
of nomenclature changes (42). We are unaware of other methods that mathematically 
combine pairwise data with other forms of genomic data or characterize synteny as a 
pairwise similarity value.

Our proposed method comprises an augmentation approach and a similarity 
measure that can be applied to pre-existing pairwise data. The choice of genes used 
for the similarity measure can play a role in determining the strength of relationships 
between already related bacteria. Some potential use cases for this method can include 
(i) finding relatives to a novel pathogen based on the synteny of antibiotic resistance 
or virulence genes, (ii) identifying bacteria with similar horizontal gene transfer profiles 
based on the syntenic similarity of transferred genes, and (iii) finding the most func
tionally similar symbionts in different communities that share the same genes and 
syntenic attributes of those genes. As sequencing technology improves, many outstand
ing questions remain about how bacterial analysis should be conducted in the future. 
Is taxonomy relevant for clinical decision-making (43)? Will whole genome sequencing 
replace 16S for bacterial identification in the future? How can reference-free approaches 
be considered instead of those that rely on genome references? We suggest that as 
bacterial genomic data grow in both quantity and quality, augmentation approaches 
can be applied to understand relationships in context-dependent environments. The 
proposed synteny similarity measure is one such example that makes use of available 
data, building on pre-existing knowledge of bacterial taxonomy, and can potentially be 
applied to functional and clinical contexts.

Conclusion

In this study, we propose a data scaling method, which adds a novel similarity meas
ure to traditional 16S rRNA distance scores, using matrix transformation. Our pairwise 
measure is based on a graphical structure of a bacterial genome, using ortholog 
location to form a numerical representation of synteny. Analyzing synteny-scaled 16S 
rRNA data in comparison to 16S rRNA and ANI data shows that our approach improves 
on clustering quality, while also retaining ANI relationships, particularly when using 
metabolic genes as the metric input. In contrast, antibiotic resistance genes can possibly 
unveil novel relationships that were not previously considered in clinical contexts as well. 
Ultimately, the choice of clustering method and input gene function determines the 
interpretation of the relationship between bacteria, making this method a context-aware 
and dynamic approach that utilizes a novel genomic attribute to determine bacterial 
relationships.
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