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Abstract

Motivation: Microbiome datasets are often constrained by sequencing limitations. GenBank is the largest collection
of publicly available DNA sequences, which is maintained by the National Center of Biotechnology Information
(NCBI). The metadata of GenBank records are a largely understudied resource and may be uniquely leveraged to ac-
cess the sum of prior studies focused on microbiome composition. Here, we developed a computational pipeline to
analyze GenBank metadata, containing data on hosts, microorganisms and their place of origin. This work provides
the first opportunity to leverage the totality of GenBank to shed light on compositional data practices that shape
how microbiome datasets are formed as well as examine host–microbiome relationships.

Results: The collected dataset contains multiple kingdoms of microorganisms, consisting of bacteria, viruses, ar-
chaea, protozoa, fungi, and invertebrate parasites, and hosts of multiple taxonomical classes, including mammals,
birds and fish. A human data subset of this dataset provides insights to gaps in current microbiome data collection,
which is biased towards clinically relevant pathogens. Clustering and phylogenic analysis reveals the potential to
use these data to model host taxonomy and evolution, revealing groupings formed by host diet, environment and
coevolution.

Availability and implementation: GenBank Host-Microbiome Pipeline is available at https://github.com/bcbi/gen
bank_holobiome. The GenBank loader is available at https://github.com/bcbi/genbank_loader.

Contact: neil_sarkar@brown.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Started in 1982, the GenBank molecular sequence database has had
a significant role in the growth and increase of genomic research.
GenBank is maintained by the National Center of Biotechnology
Information (NCBI) at the US National Library of Medicine and is
often a main reference for genomic analysis. As of this writing,
GenBank contains 476 million records, with 223 542 prokaryotic
genomes representing 14 606 species, and 1290 eukaryotic species
genomes (Sayers et al., 2022). GenBank is populated through a com-
bination of submissions from individual researchers, collaborative
consortia, as well as internal NCBI efforts. GenBank supports mo-
lecular sequence studies across many fields, including population
genetics, disease analysis and the microbiome (Cho et al., 2000;
Powell et al., 1995; Sarkar, 2010). GenBank data compositional
studies to date have been done on molecular sequence data and not
specifically in a microbiome context.

The microbiome, the combination of all the microorganisms in a
host, has been associated with numerous disease and functional phe-
notypes in humans (Cho and Blaser, 2012). Studies have examined

the microbiome’s role in the gut–brain axis, cancer risk, digestion,
obesity, immune modulation, drug metabolism, as well as risk for
disease or dysfunction (Blacher et al., 2017; Cryan and O’Mahony,
2011; Helmink et al., 2019; Lawrence and Hyde, 2017; Ley, 2010;
Zimmermann et al., 2019). Microbiome analyses rely on the identi-
fication of the microorganisms within a given sample. Species identi-
fication of microorganisms with a sample is typically done using
sequencing, which includes the alignment of molecular sequence
data to reference or representative genomes (Malla et al., 2018).
This compositional analysis relies on knowing which references are
available from common molecular sequence databases, such as
GenBank. Understanding the taxonomic composition of GenBank is
therefore an essential step to advance microbiome research.

This study is the first to retrospectively analyze GenBank data
composition for the microbiome. Previous studies have examined
the utility of GenBank metadata for a range of other contexts,
including those that examine comparative biology or phylogeogra-
phy (Chen and Sarkar, 2010, 2011; Magge et al., 2020; Scotch
et al., 2011; Tahsin et al., 2016; Weissenbacher et al., 2015).
Through a novel panel of methods to analyze GenBank data, we
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assessed the potential of GenBank to support microbiome studies.
The data composition of GenBank can be best assessed by analyzing
its metadata. Each GenBank microorganism submission or record,
aside from its genomic information and sequence, contains the infor-
mation of where and how it was collected and identified. In the con-
text of host–microbiome organisms, the metadata indicate the
species of the host and the tissues or organs that they were cultured
or found in. The combination of data on the microorganism type,
the host, as well as the tissue origin of the microorganism, provide
ample data to analyze host–microbiome relationships across specific
sites. For this study, we focused on analysis of gut microbiome data,
which form the dominant source sites in GenBank. Specifically, we
analyzed the data composition of microbiome data across multiple
hosts from the animal kingdom. We used an unsupervised clustering
technique to identify clusters of hosts based on microbiome similar-
ity as well as generated a phylogenetic tree of the hosts using micro-
biome composition to model host–microbiome coevolution.

Harnessing repositories such as GenBank for large-scale retro-
spective studies, such as the study presented here, requires the devel-
opment of methods to standardize data originating from disparate
studies and naming schemas. Contributions and insights of this
study include (i) displaying the pathogenic focus within GenBank
microbiome data; (ii) exploring host–microbiome data in the con-
text of evolution and clustering; and (iii) demonstrating the potential
for retrospective GenBank data outside of representative sequences
and as a dataset on its own. This study makes use of GenBank as a
nontraditional microbiome dataset and demonstrates the potential
value in its use to understand pathogenic microbiomes, particularly
in the context of host–microbiome evolution.

2 Material and methods

2.1 Collecting and processing data from GenBank
Microbiome and associated host information was imputed from
GenBank metadata, which were systematically downloaded and
extracted using an updated version of a Java program (genbank-
loader: https://bitbucket.org/UVM-BIRD/genbank-loader/src/mas
ter/). The tool retrieved and extracted GenBank metadata into a
MySQL database, which included a record of a given microorgan-
ism, along with its provided source site, the recorded host and the
tissue type. The data from the fields were mapped to standardized
terms. Data processing was done in Python3 and Julia 1.5.4.
Isolation source and tissue type data were then mapped to Unified
Medical Language System (UMLS) concepts using the MetaMap
tool from the National Library of Medicine (Aronson, 2001),
merged into a single dataset including only isolation sources that
were tissue types or organs, and then categorized into general group-
ings for tissue type source sites. Because of variation among the
manually input data and terminology across different types of host
animals, standardized groupings were created to represent terms
across a known microbiome region. The groupings of interest for
this study were gastrointestinal (GI) concepts (keywords: feces, ab-
domen, intestine, rectum, stomach, esophagus, rumen, colon, ileum,
cecum, jejunum and duodenum).

Host data were processed using a combination of MetaMap and
the NCBI Entrez Taxonomy database to map GenBank record meta-
data to scientific names of animal hosts. For this study, only hosts
with species-level scientific names were kept (i.e. discarding hosts
with vernacular or genus-level names). Additionally, only hosts with
GI tracts were kept from the following classes: Mammalia, Aves,
Reptilia, Amphibia, Cephalopoda and Actinopterygii. Microbe or-
ganism data were mapped to NCBI Entrez Taxonomy database and
used to retain bacteria, archaea, fungi, protozoa, viruses and inverte-
brate parasites. Uncultured or unspecified microorganisms of non-
specific phyla were not included.

The resultant combined data matrix was organized into a pres-
ence–absence matrix, where each host had a binary value indicating
whether a particular phylum of microorganisms was found in the
host data. Presence was indicated by a ‘1’ and absence indicated by
a ‘0’, with all microorganismal phyla being given equal weight.

Non-microbiota phyla were filtered to retain only phyla with at least
one data point amongst all the included hosts.

For the host data, weighted sampling was used to equalize cover-
age amongst hosts that were overrepresented. Only hosts with at
least four presence values were kept for the matrix. If the host data
consisted of more than 10 phyla, then a weighted sampling was per-
formed. The probability distribution of the weighted sampling was
calculated by measuring the percentage of records in the dataset for
a microorganism per host. Each phylum was redrawn based on the
weighted probability distribution to create a coverage corrected host
data.

2.2 Composition of GenBank data
Composition analysis of GenBank data was performed in Python
with Matplotlib, using Jupyter Notebooks. Percentages were calcu-
lated by tabulating the number of unique species present in every
phylum for a given grouping across all hosts as well as for humans.
An incidence-specific Hill Numbers approach, extended by Chao
et al., was used to quantify diversity values and create rarefaction
curves, using a combination of q¼0, q¼1 and q¼2 Hill Numbers
(Chao et al., 2014). Sample cohorts were randomly sampled from
the original presence–absence matrix from the GI data at both the
phylum and species level without replacement.

2.3 Unsupervised clustering using markov clustering
The Markov Clustering Algorithm (MCL) was used to form clusters
of hosts using unsupervised learning. MCL requires a pre-formed
network, with edges connecting nodes based on similarity. The net-
work for this study consisted of nodes representing hosts, with edges
based on cosine similarity. Cosine similarity measures the cosine of
the angle of difference between two vectors, where each vector rep-
resents a host’s presence–absence data.

For vectors A and B with presence–absence data, cosine similar-
ity ranges from 0 to 1, with 1 being the most similar and 0 being the
least similar. Cosine similarity values were calculated for all pair-
wise combinations of hosts based on their microbiome composition-
al data. Edges were added between nodes for cosine similarity values
>0.66, which approximately indicated an angle of difference less
than 50 degrees. Networks were created for all hosts, as well as sole-
ly mammalian hosts, the latter of which was only used for visualiza-
tion. The hosts were then clustered using the MCL algorithm. For
visualization, each node was labeled with the cluster and taxonomic-
al data. The clustering results were visualized in Cytoscape, where
node size was dependent on the degree of associated edges. Cluster
composition was analyzed by calculating the percentage present per
each phylum shared across cluster members. Cluster composition
was visualized as a heatmap using Seaborn in Python.

2.4 Analyzing host evolution using microbiome

composition
A Neighbor Joining phenetic (distance-based) tree was created from
the presence–absence host data using PAUP* (Phylogenetic Analysis
Using Parsimony*and other methods). The tree was rooted at
Octopus mimus, which was identified as the most ancestral host in
the dataset based on TimeTree (http://timetree.org; Kumar et al.,
2017). The tree and taxonomic class groupings were visualized using
ggtree and treeio in R (Wang et al., 2020; Yu, 2020). A reference evo-
lutionary tree was created in TimeTree using the same hosts from the
microbiome tree, rooted at Octopus vulgaris, and visualized in R with
ggtree. Hosts that were not found in the TimeTree database were sub-
stituted based on TimeTree host naming conventions.

3 Results

3.1 Outputs of the GenBank database pipeline
In total, the GenBank loader program retrieved and standardized
184 659 278 records. Of the 163 905 unique microbial species total in
the database, 9070 could not be identified and 885 uncultured
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specimens were removed. The GI grouping consisted of 37 007 067
records, the largest of any of the source sites. The corresponding GI
presence–absence matrix had 132 hosts. Genus level hosts were
excluded and host names with the same scientific name, but different
naming conventions were merged. Additionally, the 59 microbial
phyla, consisting of 19 bacterial, 10 protistan, 17 viral, 3 invertebrate,
9 fungal and 1 bacteriophage phyla, were excluded as hosts.

3.2 Insights from the GenBank data
The 132-host presence–absence matrix contained 28 373 microbial
species. The general composition of the microbial phyla consisted of
Proteobacteria at 30%, Firmicutes at 23%, Pisuviricota at 9%,
Actinobacteria at 7%, Bacteroidetes at 5%, Apicomplexa at 4%,
Ascomycota at 3% and smaller phyla under 2% (Fig. 1A). This com-
position was observed in other groupings as well, specifically mam-
mals and humans (Fig. 1B and C). Based on this data skew towards
species in the Proteobacteria phylum, the rest of the analysis was per-
formed on the phylum level to reduce bias towards Proteobacteria
species data. Additional analysis of other mammal groupings, specific-
ally primates and bats, indicated other forms of data bias. Primates
were dominated by Apicomplexa followed by viral phyla, while bats
only had viral phyla present (Supplementary Fig. 1).

The biodiversity estimation based on Hill Numbers revealed the
impact of human data on the biodiversity of the dataset (Fig. 2C).
When human data were introduced into biodiversity calculations, all
three metrics (species richness, Shannon diversity and Simpson diver-
sity) showed sharp increases in diversity values. Analysis at the phy-
lum level showed a balanced approach to biodiversity estimation,
where no host drastically increased the estimator’s values. The phylum
level was used for all analysis because it did not bias towards any
hosts that drastically impacted biodiversity estimates. On the phylum
level, Proteobacteria had a presence value in 64% of the hosts, fol-
lowed by Pisuviricota, Apicomplexa and Firmicutes being present in
approximately half of the hosts. The presence data from the GenBank
GI dataset was visualized as a network, where each edge modeled a
presence value between host and microorganism phyla (Fig. 3).

3.3 Clustering of GenBank GI data forms unsupervised

groups based on microbiome composition
The Markov Clustering algorithm (MCL) resulted in the formation
of 16 clusters using phylum level GI data. The four clusters that con-
tained most of the hosts were Clusters 1, 2, 3 and 6 (Fig. 4A).
Clusters 1 and 2 had mixtures of Mammalia (58% of hosts in
Cluster 1 and 76% of hosts in Cluster 2) and Aves (42% hosts in

Cluster 1 and 24% hosts in Cluster 2). Cluster 3 contained only
mammals, of which 50% were Artiodactyla or even-toed ungulates.
Cluster 6 contained most of the Actinopterygii (76% of hosts in
Cluster 6), followed by 24% mammalian hosts. The smaller clusters
contained groupings of mammals and Aves or mammals alone.
Clusters 4 and 7 solely had primates, while Cluster 9 consistent of
only rodents. Certain phyla were predominantly shared by hosts of
specific clusters, which were visualized as a heatmap (Fig. 4B). The
largest four clusters (Clusters 1, 2, 3 and 6) had high percentages of

Fig. 1. Visualization of the GenBank Host-Microbiome Pipeline steps. After initial

download of GenBank Metadata, data are organized into three data types (A) after

which it is mapped to two different databases (B) to clean up manual input errors

and classify groupings. The cleaned records (C) are grouped together based on a

chosen group and turned into a presence–absence matrix (D) based on each host–

microorganism record, indicating a presence. (E) An example record going through

Step B, in which the source site and host name are standardized using MetaMap,

after which the cleaned host name and species name are referenced to NCBI

Taxonomy for taxonomic information.

Fig. 2. Species based data composition and diversity analysis. (A) Percentage com-

positional makeup per phyla of entire dataset (Overall), mammalian subset

(Mammals) and human data (Humans). Each percentage indicates the number of

unique species in each phylum, averaged across the total number of species. All

phyla under 2% representation were merged into a general group, ‘Other’.

Proteobacteria and Firmicutes dominate all three datasets based on unique species

found. Panels (B) and (C) depict biodiversity estimator analysis using q-based Hill

Numbers. (B) Hill numbers approach for incidence data at the phylum level. (C)

Hill numbers approach for incidence data at the species level. Sample size refers to

number of hosts used per run and diversity value reflects the estimator output for

each q-value. The large increase in diversity value in (C) occurs at the introduction

of Homo sapiens data into the analysis.

Fig. 3. Visualization of the GI presence–absence data matrix, grouped based on

taxonomical class for hosts and domain for microorganism phyla. Visualization was

processed in Cytoscape, in which node size is representative of the degree of edges

for the node. Edges indicate a presence value between a host–microorganism phyla

pair. Each host class and microorganism phyla domain are colored individually and

labeled distinctly.

Fig. 4. Visualization of results from Markov Clustering Linkage (MCL) algorithm.

(A) Grouped clusters from GI phylum data, color corresponding to taxonomical

class and size of nodes reflecting degree per node. Clusters labeled based on unsuper-

vised ordering of the algorithm. (B) Microorganism phyla composition per cluster,

calculated as fraction of presence per each phylum among each cluster’s hosts. Phyla

are grouped based on microorganism domain accordingly.
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Proteobacteria and Firmicutes. Cluster 1 was most defined by viral
phyla such as Pisuviricota and Cossaviricota, while Cluster 2
showed large range of shared phyla across all kingdoms. Cluster 3
was defined by the dominant bacterial phyla, as well as
Apicomplexa and Pisuviricota, while Cluster 6 contained
Bacteroidetes alongside the dominant bacterial phyla.

3.4 Evolutionary analysis of GenBank GI data models

host–microbiome coevolution
The evolutinary trees created from the GI presence–absence data
identified some evolutionary supported groupings and other unsup-
ported clades (Fig. 5A). Humans were distinct from most primates,
alongside domesticated animals, animal model organisms, rhesus
macaques and livestock animals. Other mammals fell into two
groupings. One mammal group consisted of larger mammals (e.g.
buffalos and camels). The second mammal group consisted of a
mixed smaller group (e.g. lemurs and deer), indicating more shared
attributes. Ray-finned fishes (Actinopterygii) were grouped in prox-
imity and closer to the root of the tree. Birds (Aves) were distributed
across the clades. Rodents were also observed to be grouped to-
gether. Primates were mostly found together, noticeably missing
humans and rhesus macaques.

Compared to a reference evolutionary tree (Fig. 5B), the posi-
tioning of the Actinopterygii was the main consistent grouping
across both trees. The differences in evolutionary distances between
clades and common ancestor branching of the clades were also vis-
ible between the reference evolutionary tree and the microbiome
based generated tree.

4 Discussion

Large and publicly accessible repositories like GenBank can be rich
sources for large-scale retrospective secondary analyses, which would
be cost and labor prohibitive as primary prospective studies.
However, for the data transformation steps needed for this study,
there is a necessity to choose methods and data representations that
accommodate the realities of collection focused repositories like
GenBank. The core of the analysis for this study focused on the devel-
opment and use of a presence–absence matrix. This was because in
GenBank the absence of a microorganism for a given host did not ne-
cessarily indicate that the microorganism did not exist in that host.
Instead, it simply indicates that there is no record of that microorgan-
ism found or identified within the given host. In contrast to the typical
use of abundance data in microbiome studies, the number of times a
given microorganism is found associated with a host in the GenBank
data is not indicative of its abundance. A presence–absence matrix
only accounts for host–microbiome pairs and does not make any
implications on abundance. A presence–absence matrix further
removes the necessity of data normalization within a particular

phylum. Regardless of the dominance of a species within a given phy-
lum, a single species within the phyla will result in a presence value
for the phyla. In addition, when considering diversity estimation of
the GenBank dataset, alpha-diversity, the traditional microbiome di-
versity measure, cannot be performed. This is because of the lack of
abundance data to calculate evenness and richness, as well as lack of
phylogenetic distances between bacterial and viral phyla. Instead, an
incidence-specific Hill Numbers approach was used to approximate
biodiversity richness. This reasoning extends to the calculation of
beta-diversity, the traditional pairwise difference method for micro-
biome samples. Cosine similarity was chosen as the similarity metric
because of its effectiveness on presence–absence data. Other, more
traditional, microbiome beta-diversity measures require microbiome
abundance data or are limited to bacterial data. Unweighted UniFrac
was considered because of the use of presence–absence data and the
addition of phylogenetic components in the diversity metric.
However, evolutionary distances of viral phyla in relation to bacterial,
archaeal, and eukaryotic phyla could not be determined. The cosine
similarity threshold of 0.66 was chosen based on the distribution of
cosine similarity values and network size. A threshold of 0.5 resulted
in 17% of all pairwise connections included in the network, while
0.75 only included 1% of all pairwise connections. Therefore, 0.66 or
2/3 was used, which included 5% of all pairwise connections.

The Markov Clustering Linkage algorithm (MCL) was chosen
for this study to form clusters out of a pre-formed network based on
cosine similarity. There are myriad unsupervised clustering techni-
ques such as K-means or graph-based clustering algorithms (Brohee
and van Helden, 2006; Shi et al., 2022). MCL was chosen because it
is unsupervised and non-parametric, therefore inferring the number
of clusters with high computational efficiency compared to other
graph-based clustering algorithms (Azad et al., 2018). Finally, the
construction of the microbiome phylogenetic tree was performed
using distance metrics, rather than character-based tree algorithms.
The neighbor joining algorithm was chosen because the distance be-
tween any two taxa is calculated based solely on the presence values.
Other tree inferencing algorithms, such as maximum parsimony or
maximum likelihood, depend on a chosen model of evolution or the
assumption that absence data indicates true absence, which were
not possible for this study.

The results of this study emphasize the importance of compos-
itional analysis for host–microbiome data in GenBank. Analysis of
the GI presence–absence matrix reveals a notable bias of the dataset
towards Proteobacteria, which consists of many pathogenic species
(Rizzatti et al., 2017; Shin et al., 2015). Indeed, the genomic infor-
mation of microbial pathogens are used to understand disease, im-
prove clinical practice, and create new therapies, therefore
increasing the likelihood of pathogenic organisms included in
GenBank. However, human gut microbiome composition is known
to be comprised of 90% Bacteroidetes and Firmicutes, the ratio of
which has been associated with gut dysbiosis and aging (Magne
et al., 2020; Mariat et al., 2009). In contrast, the GenBank human
GI data shows higher composition of Proteobacteria and Firmicutes,
with Bacteroidetes making up a much smaller percentage (Fig. 2C).
Bacteroidetes are well-associated with humans, with the genera
Prevotella associated with fiber heavy diets and Bacteroides as an
opportunistic pathogen in westernized microbiomes (Chen et al.,
2017; Vangay et al., 2018). It is possible that the decreased
Bacteroidetes data is due to challenges in culturing anaerobic spe-
cies. Additionally, diseased patients often have increased levels of
Proteobacteria and decreased Bacteroidetes during analysis of their
gut microbiomes, thus it is possible that microbial composition in
GenBank is reflective of a diseased human gut (D’Argenio and
Salvatore, 2015). However, given that GenBank data represents the
record collection of multiple studies on the microbiome as well as
the specification of phylum-level analysis in this study, the ratio
of Proteobacteria to Bacteroidetes could be due to a combination of
both a clinical pathogenic focus as well as sampling diseased
patients through that context. Another area of low representation is
Archaea. The phylum Euryarchaeota plays an important role in the
gut microbiome and is normally characterized as one component of
microbiome composition. However, there is likely limited data on

Fig. 5. Evolutionary trees of microbiome composition and true evolutionary tree.

(A) Microbiome based evolutionary tree, created with PAUP* and labeled based on

taxonomical class of the host. (B) True evolutionary tree based on phylogenetic dis-

tance, created with TimeTree, and using same hosts from Tree A with substitutions

based on database labeling differences. Both trees visualized with ggTree in R and

rooted with oldest evolutionary host, Octopus vulgaris.
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this phylum because Archaea are hard to culture and identify
(Eckburg et al., 2005). The remaining phyla are comprised of fungi,
protozoa, viruses, and invertebrates, of which fungi and protista
have been linked to digestive functions while viruses and inverte-
brate worms can impact microbial diversity (Chabe et al., 2017;
Firkins et al., 2020; Garmaeva et al., 2019; Gilbert et al., 2021;
Gouba and Drancourt, 2015; Mukhopadhya et al., 2019).

The hosts identified in this study skew towards mammals, of
which humans, livestock, and model organisms comprise the major-
ity. While host organisms from the Aves and Actinopterygii classes
were also included in this study, some taxonomical classes (e.g.
Reptilia and Amphibia) were not included because of lack of data
(i.e. fewer than four microbial species associated species) or chal-
lenges with standardization (e.g. ambiguous genus or common
names). Mammalian analysis alone indicated higher data coverage
in the following orders: Carnivora, Rodentia, Primates, Artiodactyla
and Chiroptera (Supplementary Fig. 2). Most of the hosts with
higher coverage included model organisms used in scientific research
and livestock animals, often studied for the food industry. The high
amounts of livestock animals indicate that the effects of domestica-
tion may impact microbiome analysis as well, yielding differences
between wild and captive/domesticated animals (Prabhu et al.,
2020). Domestication impacts on animals have been paralleled with
the impact of industrialization on humans (Reese et al., 2021). Plant
microbiota also shows reduced diversity under domestication,
affecting crop production (Martinez-Romero et al., 2020). Because
domestication is a nascent area of study with the gut microbiome,
there are limited studies examining its impact on microbiome–host
coevolution. There may be opportunities to further examine the im-
pact of domestication on microbiome composition given the high
amount of domesticated host animals in GenBank.

The results of Markov Clustering Algorithm (MCL) demonstrated
how hosts could be grouped based on similarities in microbiome com-
position (Fig. 3A). The resulting groupings reflected the ubiquity of
certain microorganism phyla in determining cluster composition
(Fig. 3B). It also delineated rough groupings of host taxonomy, in
which Actinopterygii separated from other Mammalia and Aves
groupings. This finding was also observed in the results of the
microbiome-based evolutionary tree (Fig. 5A). This could be due to a
multitude of reasons. Host diet could play a role in affecting micro-
biome composition of different host animals. Gut microbiome func-
tions of herbivorous and carnivorous mammals show differences in
microbiome composition based on diet. For example, herbivores tend
to have more carbohydrate-metabolizing symbionts and carnivores
have more protein-metabolizing enzymes (Muegge et al., 2011).
Dietary impacts on gut microbiomes have been tested with studies on
human diets impacting microbiome composition (Singh et al., 2017).
High animal protein diets show increased bile-tolerant bacteria
(Proteobacteria, Bacteroidetes) and plant protein diets have increased
dietary plant polysaccharide fermenters (Firmicutes; David et al.,
2014). Human diet studies provide a rough outlook of how different
diets could impact wild host animals’ microbiomes. However, because
this dataset has a likely human disease bias and uses phylum-level inci-
dence data, diet is not a clear factor for microbiome composition.
Other biases may skew nonhuman host animals’ composition, such as
farm and zoo environments. Therefore, the dietary and environmental
diversity of mammals and birds could impact microbiome compos-
ition of non-human host animals characterized in GenBank.

Our findings further reinforce findings from an analysis by
Youngblut et al., where they examined the microbiome composition of
animal hosts using 16S RNA sequencing, revealing four distinct sub-
networks based on presence–absence data: (i) Bacteroidetes, (ii)
Firmicutes, (iii) Proteobacteria and (iv) Euryarchaeota (Youngblut
et al., 2019). Firmicutes and Proteobacteria were found in every spe-
cies, followed by Actinobacteria and Bacteroidetes, as seen in our
study. Proteobacteria were particularly dominant in carnivores, fol-
lowed by higher levels of Bacteroidetes in omnivores and high levels of
Firmicutes in herbivores. In ungulates and primates, Spirochaetes were
identified as impactful, which were also found in our ungulate data but
not primate data. Actinopterygii were characterized by Proteobacteria,
which our data also confirmed. While Youngblut et al. showed strong

grouping by diet and taxonomic class, this was less clear with
microbiome-based phylogeny. Nonetheless, the corroborating results
between the Youngblut et al. research and our study demonstrate the
promise in leveraging existing data repositories, such as GenBank.

Sequencing limitations may bias the identification of microor-
ganisms in a given sample (Nearing et al., 2021). Furthermore, the
skew in GenBank towards clinical pathogens limit the ability of
reference-sequence based identification of less culturable or identifi-
able symbionts. For example, fungal symbionts, Euryarchaeota and
Spirochaetes, have been identified as having biased abundances and
identification based on lack of primers and computational methods
(Campanaro et al., 2018; Tedersoo and Lindahl, 2016). Therefore,
alongside organismal differences of diet, domestication and habitat,
sequencing limitations in reference libraries (including GenBank)
and primers can also play a role in determining the microbiome
composition behind these results.

The results of this study provide an insight into the composition of
host–microbiome data in GenBank as well as the potential for compu-
tational analysis on microbiome-based host analysis. The pathogenic
focus of GenBank, while skewed when regarding microbiome analysis,
can be considered in understanding microbial diseases or nonhealthy
microbiomes. In addition, the database composition can be studied to
understand host microbiome relationships, particularly in the context
of diet and domestication as well as sequencing limitations and sam-
pling biases. The host–microbiome pairs derived from GenBank pro-
vide unique data on often forgotten members of the microbiome, such
as fungal, protistan, invertebrate and viral phyla. These phyla play
smaller but valuable roles in defining the microbiome and are now
being considered more in microbiome research (LaPierre et al., 2019).
Given that many metrics and analyses in the microbiome are often per-
formed on solely bacteria, this study indicates the informative value of
nonbacterial species in the microbiome. Another area of potential
host–microbiome analysis is in non-GI isolation sources, such as skin
or oral microbiomes. The framework developed for this study could
therefore be extended to consider the entire group of bionts alongside
the host, considering the host and its microbiome as a single evolution-
ary unit, known as the ‘holobiont’ (Huitzil et al., 2018; Singh et al.,
2013). Finally, the results of this study provide the opportunity to con-
sider the utility of non-traditional microbiome datasets as a comple-
ment to advance microbiome studies prospectively.
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